## The First Example of a Direct Formal Gold( $\iota$ )–Gold( $\iota$ )) Bond. Synthesis and Structure of [{Au(CH<sub>2</sub>)<sub>2</sub>PPh<sub>2</sub>}<sub>2</sub>Au(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>]

Rafael Usón, a Antonio Laguna, a Mariano Laguna, a Maria Teresa Tartón, a and Peter G. Jonesb

<sup>a</sup> Departamento de Química Inorgánica, Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza-C.S.I.C., 50009 Zaragoza, Spain

<sup>b</sup> Institut für Anorganische Chemie der Universität, Tammannstrasse 4, 3400 Göttingen, Federal Republic of Germany

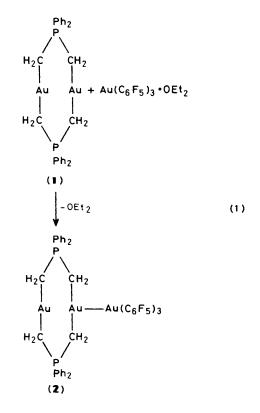
The reaction of  $[Au(CH_2)_2PPh_2]_2$  with  $Au(C_6F_5)_3$ ·OEt<sub>2</sub> affords the trinuclear gold complex  $[{Au(CH_2)_2PPh_2}_2Au-(C_6F_5)_3]$ ; the  $Au \vdash Au^{|||}$  bond length is 2.572(1) Å.

Short non-bonded Au<sup>I</sup> · · · Au<sup>I</sup> contacts of less than 3 Å are well documented, and numerous gold clusters and gold(II) complexes (containing Au<sup>II</sup>–Au<sup>II</sup> bonds) have been described.<sup>1</sup> However, no gold complex displaying only a single direct gold–gold bond, unbridged by any other ligand, has been reported until now.

We have recently<sup>2-5</sup> reported heteronuclear complexes containing Au<sub>2</sub>Ag<sub>2</sub> rings with unbridged Au-Ag bonds, but the starting gold complexes  $[Au(C_6F_5)_2]^$ and  $[Au(CH_2PR_3)_2]^+$  seem to be unable to react with gold centres, such as  $[Au(C_6F_5)_3 \cdot OEt_2]$ , to give a gold-gold bond; instead, ligand ( $C_6F_5$  or  $CH_2PR_3$ ) migration takes place, forming monomeric products  $[Au(C_6F_5)_4]^$ or  $[Au(C_6F_5)_3]$ (CH<sub>2</sub>PR<sub>3</sub>)].<sup>6</sup> We therefore selected a different starting complex,  $\mu,\mu'$ -bis(diphenylphosphinium)bis(methylido)gold(I) (1), which has been structurally characterized by Fackler et al.<sup>7</sup> and fully described by Schmidbauer et al.<sup>8</sup> (1) contains two Au<sup>I</sup> centres doubly bridged by the strong ligand  $[Ph_2P(CH_2)_2]^-$  and should thus possess excess electron density at the gold atoms without being too susceptible to ligand migration.

A colourless dichloromethane solution of (1) turned red on the addition of colourless solid  $Au(C_6F_5)_3 \cdot OEt_2^9$  (molar ratio 1:1). After five min stirring, evaporation of the solvent *in vacuo* yielded complex (2) (equation 1), which is nonconducting in acetone solution and monomeric in chloroform [isopiestic method; M.W. 1638 (calc. 1519)].

The structure of (2) was established by a single crystal X-ray study (Figure 1).<sup>†</sup> The two Au<sup>I</sup> centres, which were 2.977(1) Å apart in (1),<sup>7</sup> approach to 2.769(1) Å in (2), which is shorter than the shortest Au<sup>I</sup> · · · Au<sup>I</sup> contact previously known (2.776 Å<sup>10</sup>) and not much longer than the longest


† Crystal data for (2): C<sub>46</sub>H<sub>28</sub>Au<sub>3</sub>F<sub>15</sub>P<sub>2</sub>, M = 1518.6, triclinic, space group  $P\overline{1}$ , a = 11.770(4), b = 13.287(6), c = 18.261(6) Å,  $\alpha = 94.35(5)$ ,  $\beta = 107.88(3)$ ,  $\gamma = 114.54(3)^\circ$ , U = 2403 Å<sup>3</sup>, Z = 2,  $D_x = 2.10$  Mg m<sup>-3</sup>, F(000) = 1412,  $\lambda(Mo-K_{\alpha}) = 0.71069$  Å,  $\mu = 9.2$  mm<sup>-1</sup>. Data were collected on a Stoe-Siemens four-circle diffractometer, crystal size  $0.4 \times 0.35 \times 0.3$  mm (amber-coloured block),  $2\theta_{max}$ . 50°, 9270 profile-fitted intensities, <sup>12</sup>8429 unique ( $R_{int}$ , 0.03), 5905 with  $F > 4\sigma(F)$  used for all calculations (program system SHELX). Absorption correction based on  $\psi$ -scans (transmissions 0.57–0.82). Cell constants refined from 2θ values of 40 reflections in the range  $20-23^\circ$ . Structure solution by heavy-atom method, full-matrix refinement on F to R = 0.051,  $R_w = 0.047$ . Non-H atoms anisotropic, H atoms included using a riding model, 596 parameters, weighting scheme  $w^{-1} = \sigma^2(F) + 0.0004(F^2)$ , S 1.6, max. residual electron density 2 e Å<sup>-3</sup>.

Complete crystallographic details have been deposited at the Fachinformationszentrum Energie Physik Mathematik, 7514 Eggenstein-Leopoldshaften 2, Fed. Rep. of Germany. Any request for this material should quote a full literature citation and the reference number CSD 53023.

Atomic co-ordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1. Au<sup>II</sup>–Au<sup>II</sup> bonds.<sup>1,7</sup> One of the Au<sup>I</sup> centres is bonded to the Au<sup>III</sup> of the starting material Au(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>·OEt<sub>2</sub>, with a very short bond of 2.572(1) Å, comparable to the shortest Au<sup>II</sup>–Au<sup>II</sup> bonds.<sup>1,11</sup> The shortest known Au–Au bond of 2.553(1) Å is observed in the Au<sup>II</sup> species [{Au(CH<sub>2</sub>PPh<sub>2</sub>S)}<sub>2</sub>Cl<sub>2</sub>].<sup>11a</sup>

The assignment of oxidation states to the gold atoms of (2) is to some extent a matter of taste. If the bonding interaction between Au(1) and Au(2) is associated with appreciable transfer of electron density from Au(2) to Au(1) (oxidation states 1 and III, respectively, in the starting materials), then this bonding system could be described as  $Au^{IL}-Au^{II}$ , and would be the first such system without a supporting bridging ligand. Mössbauer spectroscopy might provide useful information as to the 'true' oxidation states.

The <sup>1</sup>H (CDCl<sub>3</sub>) and <sup>31</sup>P n.m.r. spectra of (2) display some differences with respect to the starting compound (1);<sup>8</sup> [(1): <sup>1</sup>H n.m.r.  $\delta$  1.30 (A<sub>2</sub>XY', d, N 13 Hz, 8H), 7.15–7.82 (m, 20 H); <sup>31</sup>P-{<sup>1</sup>H} n.m.r.  $\delta$  34.2(s) p.p.m.; (2): <sup>1</sup>H n.m.r.  $\delta$  1.38 (A<sub>2</sub>XX', d, N 12.9 Hz, 4H), 1.63 (A<sub>2</sub>XX', d, N 11.3 Hz, 4H), 7.2–7.6 (m, 20H); <sup>31</sup>P-{<sup>1</sup>H} n.m.r.  $\delta$  29.65(s) p.p.m.] *i.e.*, the equivalent H atoms in the four methylene groups of the starting complex (1) are distributed in two sets of four H atoms in (2).



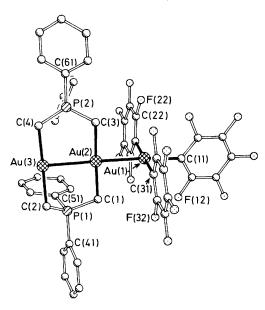
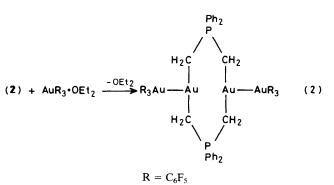




Figure 1. The molecule of complex (2) in the crystal (radii arbitrary, H atoms omitted). Selected bond lengths (Å): Au(1)-Au(2) 2.572(1), Au(2)-Au(3) 2.769(1), Au(1)-C(11) 2.021(10), Au(1)-C(21) 2.076(11), Au(1)-C(31) 2.048(11), Au(2)-C(1) 2.106(11), Au(2)-C(3) 2.102(11), Au(3)-C(2) 2.095(12), Au(3)-C(4) 2.046(13).

It is naturally tempting to add another Au( $C_6F_5$ )<sub>3</sub> moiety to the 'free' gold(1) atom of (2), either by repeating the reaction of equation 1 with molar ratio 1:2 or by the process of equation 2. In both cases deep red solutions are formed, from which a red-brown solid (3) is obtained upon evaporation of the solvent. Compound (3) analyses according to the expected stoicheiometry; it is non-conducting in acetone, and its molecular weight in chloroform is 2372 (calc. 2217). However, its <sup>1</sup>H n.m.r. spectrum is incompatible with the symmetric structure of Equation 2 [ $\delta$  1.42 (A<sub>2</sub>XX', d, N 10.2 Hz, 4H), 1.87 (A<sub>2</sub>XX', d, N 13.7 Hz, 4H), 7.4–7.8 (m, 20H); <sup>31</sup>P-{<sup>1</sup>H} n.m.r.  $\delta$  22.64 p.p.m.] We have not yet been able to obtain crystals suitable for X-ray studies.

Silver salts (AgClO<sub>4</sub>) or complexes (O<sub>3</sub>ClOAgPPh<sub>3</sub>) also react with complex (1) to give black solids of the presumed stoicheiometry [ $\{Au(CH_2)_2PPh_2\}_2AgOClO_3\}$  and [ $\{Au(CH_2)_2PPh_2\}_2Ag(OClO_3)(PPh_3)\}$ ], respectively. The insolubility of these complexes precludes spectroscopic inves-



tigation, but the analyses are consistent with the suggested formulae.

We thank the Fonds der Chemischen Industrie and the C.A.I.C.Y.T. (Spain) for financial support.

Received, 27th January 1988; Com. 8/002951

## References

- 1 P. G. Jones, *Gold Bull.*, 1981, 14, 102, 159; 1983, 16, 114; 1986, 19, 46. See also Refs. 7 and 11.
- 2 R. Usón, A. Laguna, M. Laguna, P. G. Jones, and G. M. Sheldrick, J. Chem. Soc., Chem. Commun., 1981, 1097.
- 3 R. Usón, A. Laguna, M. Laguna, B. R. Manzano, P. G. Jones, and G. M. Sheldrick, J. Chem. Soc., Dalton Trans., 1984, 285.
- 4 R. Usón, A. Laguna, M. Laguna, B. R. Manzano, and A. Tapia, *Inorg. Chim. Acta*, 1985, **101**, 151.
- 5 R. Usón, A. Laguna, M. Laguna, A. Usón, P. G. Jones, and C. Freire Erdbrügger, Organometallics, 1987, 6, 1778.
- 6 R. Usón, A. Laguna, M. Laguna, A. Usón, and M. C. Gimeno, Organometallics, 1987, 6, 682.
- 7 J. D. Basil, H. H. Murray, J. P. Fackler, Jr., J. Tocher, A. M. Mazany, B. Trzcinska-Bancroft, H. Knachel, D. Dudis, T. J. Delord, and D. O. Marler, *J. Am. Chem. Soc.*, 1985, **107**, 6908, and references therein.
- 8 H. Schmidbaur, C. Hartmann, J. Riede, B. Huber, and G. Müller, Organometallics, 1986, 5, 1652, and references therein.
- 9 A. Laguna, M. Laguna, A. Rojo, and M. N. Fraile, J. Organomet. Chem., 1986, 315, 269.
- 10 Y. Inoguchi, B. Milewski-Mahrla, and H. Schmidbaur, Chem. Ber., 1982, 115, 3085.
- (a) L. C. Porter and J. P. Fackler, Jr., *Acta Crystallogr., Sect. C.*, 1987, **43**, 587; (b) R. Usón, A. Laguna, M. Laguna, M. N. Fraile, P. G. Jones, and G. M. Sheldrick, *J. Chem. Soc., Dalton Trans.*, 1986, 291.
- 12 W. Clegg, Acta Crystallogr., Sect. A, 1981, 37, 22.